Skip to main content

AtCoder Beginner Contest 176

Problem A - Takoyaki

The time needed equals to NXT\left\lceil\frac{N}{X}\right\rceil\cdot T.

Code (Python3)
n, x, t = map(int, input().split(' '))
print(((n - 1) // x + 1) * t)

Problem B - Multiple of 9

Let n=ai×10in=\sum a_i\times10^i, since i,10i1(mod9)\forall i,10^i\equiv1(\mod9), we have nai(mod9)n\equiv\sum a_i(\mod 9) . So we just need to check the sum of all the digits of nn.

Code (Python3)
print('Yes' if sum(map(int, input())) % 9 == 0 else 'No')

Problem C - Step

Just greedily increase current number to the maximum to its left, and then update the maximum if current number is larger than it.

Code (C++)
#include <iostream>
#include <vector>

using namespace std;
typedef long long ll;
int main() {
int n;
cin >> n;
vector<int> a(n + 1);
for (int i = 1; i <= n; ++i)
cin >> a[i];
int hi = 0;
ll ans = 0;
for (int i = 1; i <= n; ++i) {
ans += max(0, hi - a[i]);
hi = max(hi, a[i]);
}
cout << ans;
}

Problem D - Wizard in Maze

It's a very typical 00-11 BFS, since the cost is 00 if we go along the roads, while the cost is 11 if we cast a magic spell.

Compared to ordinary BFS, we need to use a deque instead of a single-ended queue. For relaxations that cost 00, we do push_front, while for those cost 11, we do push_back. In this way, the elements in the deque are kept in an non-decreasing order, which means we will happily take the current value as the optimal value when we first reach the target position.

Code (C++)
#include <deque>
#include <iostream>
#include <vector>
#define INF 0x3f3f3f3f

using namespace std;

const int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, -1, 0, 1};
int h, w, sx, sy, ex, ey;

int main() {
cin >> h >> w >> sx >> sy >> ex >> ey;
sx--, sy--, ex--, ey--;
vector<string> a(h);
for (int i = 0; i < h; ++i)
cin >> a[i];
vector<vector<int>> dist(h, vector<int>(w, INF));
vector<vector<bool>> vis(h, vector<bool>(w, false));
deque<pair<int, int>> q;
q.push_back({sx, sy});
dist[sx][sy] = 0;
while (!q.empty()) {
auto f = q.front();
q.pop_front();
int ci = f.first, cj = f.second;
if (ci == ex && cj == ey) {
cout << dist[ci][cj];
return 0;
}
if (vis[ci][cj])
continue;
vis[ci][cj] = true;
for (int k = 0; k < 4; ++k) {
int ni = ci + dy[k], nj = cj + dx[k];
if (ni < 0 || ni >= h || nj < 0 || nj >= w ||
dist[ni][nj] <= dist[ci][cj] || a[ni][nj] == '#')
continue;
dist[ni][nj] = dist[ci][cj];
q.push_front({ni, nj});
}
for (int ni = ci - 2; ni <= ci + 2; ++ni)
for (int nj = cj - 2; nj <= cj + 2; ++nj) {
if (ni < 0 || ni >= h || nj < 0 || nj >= w || a[ni][nj] == '#' ||
dist[ni][nj] <= dist[ci][cj] + 1)
continue;
dist[ni][nj] = dist[ci][cj] + 1;
q.push_back({ni, nj});
}
}
cout << -1;
}

Problem E - Bomber

First, we can simply count how many targets there are in each row and each column.

Supposing the maximum of rows is RmaxR_{max}, and CmaxC_{max} for columns. It is obvious that we can never achieve any value greater than Rmax+CmaxR_{max}+C_{max}. In addition, we may not achieve Rmax+CmaxR_{max}+C_{max} because there might be a target at the crossing point of the row and the column, in which case this target is counted twice. So our worst case value is Rmax+Cmax1R_{max}+C_{max}-1 if we choose a row from those having RmaxR_{max}, and a column from those having CmaxC_{max}. Since all other choices cannot give better results, we only need to consider these rows and columns.

There might still be a log of combinations (worst case O(NM)O(NM)). However, we do not need to check these combinations one by one. We can consider it from the perspective of targets. Say there are nn rows of RmaxR_{max} and mm columns of CmaxC_{max}, if the number of target is smaller than nmnm, then it is ensured than there is at least one combination which will give us Rmax+CmaxR_{max}+C_{max}. Otherwise, there are not so many combinations, so we can check them one by one, until we find a combination giving Rmax+CmaxR_{max}+C_{max}, or we finish all the combinations and none is suitable, then we will have Rmax+Cmax1R_{max}+C_{max}-1 instead.

Code (C++)
#include <algorithm>
#include <iostream>
#include <set>
#include <vector>

using namespace std;
int main() {
int h, w, m;
cin >> h >> w >> m;
vector<int> hc(h + 1), wc(w + 1);
vector<pair<int, int>> p(m);
for (int i = 0; i < m; ++i)
cin >> p[i].first >> p[i].second, hc[p[i].first]++, wc[p[i].second]++;
set<pair<int, int>> s(p.begin(), p.end());
int hm = *max_element(hc.begin(), hc.end());
int wm = *max_element(wc.begin(), wc.end());
vector<int> vh, vw;
for (int i = 1; i <= h; ++i)
if (hc[i] == hm)
vh.emplace_back(i);
for (int i = 1; i <= w; ++i)
if (wc[i] == wm)
vw.emplace_back(i);
int sh = vh.size(), sw = vw.size();
if (sh * sw > m) {
cout << hm + wm;
return 0;
}
for (int i : vh)
for (int j : vw)
if (!s.count({i, j})) {
cout << hm + wm;
return 0;
}
cout << hm + wm - 1;
}

Problem F - Brave CHAIN

There is an obvious O(N3)O(N^3) DP idea, in which we maintain states dp[i][j]dp[i][j], meaning the maximum we can get when we choose to keep numbers (not indices) ii and jj. But this is not enough to pass.

Do we always need to update all the states? For each segment of length 33, only a few of all states can be updated, because we are only given at most 33 different numbers, which means we do not have many choices.

So, how to do state transitions? Supposing we are considering a,b,ca,b,c.

  • If a=b=ca=b=c, then we should choose them all. In this case, instead of updating states, we should keep the number of such triplets in a separate variable. So the transition is O(1)O(1).
  • We change the current reserved numbers to two of a,b,ca,b,c, e.g., (a,b)(a,b). In this case, we have two further choices
    • Make no triplets, and update dp[a][b]dp[a][b] to current global optimal value optopt.
    • Make a triplet using two reserved cc and current cc, then update dp[a][b]dp[a][b] to dp[c][c]+1dp[c][c]+1. The transition is O(1)O(1).
  • We change one of the reserved number to one of a,b,ca,b,c, e.g., aa. In this case, we need to enumerate the other reserved number xx, and we have two further choices
    • Make no triplets, and update dp[a][x]dp[a][x] to local optimal value local_opt[x]local\_opt[x], which means the best value we can get when we reserve at least one xx.
    • Particularly, if b=cb=c, then we can update dp[a][x]dp[a][x] to dp[b][x]+1dp[b][x]+1 The transition is O(N)O(N)

So the overall time complexity becomes O(N2)O(N^2), which is acceptable. It should be noted that all these updates should not be applied instantly. Instead, we store them and apply them at last.

During the update dp[i][j]valdp[i][j]\rightarrow val, we need to update

  • Global optimum optmax{opt,val}opt\rightarrow\max\{opt,val\}
  • Local optimum local_opt[i]max{local_opt[i],val}local\_opt[i]\rightarrow\max\{local\_opt[i],val\}, and local_opt[j]max{local_opt[j],val}local\_opt[j]\rightarrow\max\{local\_opt[j],val\}
  • State dp[i][j]max{dp[i][j],val}dp[i][j]\rightarrow\max\{dp[i][j],val\}, and dp[j][i]max{dp[j][i],val}dp[j][i]\rightarrow\max\{dp[j][i],val\}

After all these, we still have not handled the last number lastlast. So we need to compare optopt and dp[last][last]+1dp[last][last]+1. After that, we add to optopt the number of natural triplets tripletstriplets, and now we have the answer.

Code (C++)
#include <iostream>
#include <vector>
#define INF 0x3f3f3f3f

using namespace std;
typedef pair<int, int> pii;
int main() {
int n;
cin >> n;
vector<int> a(3 * n);
for (int i = 0; i < 3 * n; ++i)
cin >> a[i];
vector<vector<int>> f(n + 1, vector<int>(n + 1, -INF));
vector<int> local_opt(n + 1, -INF);
f[a[0]][a[1]] = f[a[1]][a[0]] = 0;
local_opt[a[0]] = 0, local_opt[a[1]] = 0;
vector<pair<pii, int>> updates;
int triplets = 0, opt = 0;
for (int i = 2; i < 3 * (n - 1); i += 3) {
vector<int> b(3);
for (int j = 0; j < 3; ++j)
b[j] = a[i + j];
if (b[0] == b[1] && b[0] == b[2]) {
triplets++;
continue;
}
updates.clear();
for (int p = 0; p <= 2; ++p) {
int q = (p + 1) % 3, s = (p + 2) % 3;
updates.push_back({{b[p], b[q]}, opt});
updates.push_back({{b[p], b[q]}, f[b[s]][b[s]] + 1});
for (int x = 1; x <= n; ++x) {
updates.push_back({{b[p], x}, local_opt[x]});
if (b[q] == b[s])
updates.push_back({{b[p], x}, f[x][b[q]] + 1});
}
}
for (const auto &u : updates) {
int x = u.first.first, y = u.first.second, val = u.second;
if (f[x][y] < val) {
f[x][y] = f[y][x] = val;
opt = max(opt, val);
local_opt[x] = max(local_opt[x], val);
local_opt[y] = max(local_opt[y], val);
}
}
}
opt = triplets + max(opt, f[a.back()][a.back()] + 1);
printf("%d", opt);
}